Worksheet for 2021-11-08

Let ∇ denote the "operator vector" $\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$. This is not a vector in the usual sense, since its components are operators rather than scalars, but treating it as one is notationally convenient. For instance, if $f(x, y, z)$ is a scalar function,

$$
\nabla f=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

which is the gradient of f. If $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ is a vector field, we can define

$$
\begin{gathered}
\nabla \cdot \mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle=P_{x}+Q_{y}+R_{z} \\
\nabla \times \mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \times\langle P, Q, R\rangle=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right]=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle
\end{gathered}
$$

which are the divergence and curl of \mathbf{F}, respectively.

Conceptual questions

Question 1. In the below, f, g denote scalar functions on \mathbb{R}^{3} while \mathbf{F}, \mathbf{G} denote vector fields on \mathbb{R}^{3}. Which of these expressions do not make sense? For the ones that do make sense, do they output a scalar function or a vector field?
(a) $\operatorname{grad} f$
(b) $\operatorname{curl}(\operatorname{div} \mathbf{F})$
(c) $\operatorname{grad}(\operatorname{div}(\operatorname{curl} \mathbf{F}))$
(d) $\nabla(\nabla \times f)$
(e) $\nabla \cdot(\nabla f)$
(f) $\nabla \cdot(\nabla \times(f \mathbf{G}))$
(g) $\nabla \cdot(\nabla f \times \nabla g)$

Question 2. Some of the expressions in the preceding part make sense but are always equal to zero (either the zero function or the zero vector field). Which ones are they?

Hint: Use the vector identity $\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G})$ for (g).

Computations

Problem 1. Let n be a constant, let r denote the scalar function $\sqrt{x^{2}+y^{2}+z^{2}}$ (which is different notation from what you are used to; sorry) and let \mathbf{r} denote the vector field $\langle x, y, z\rangle$.

Compute the following:
(a) $\nabla\left(r^{n}\right)$
(b) $\nabla \times\left(r^{n-1} \mathbf{r}\right)$
(c) $\nabla \cdot\left(r^{n-1} \mathbf{r}\right)$.

For part (c), what value of n makes the answer equal to zero?
Hint: The most direct way to do this is to just write everything out in terms of x, y, z and differentiate. But if you want to try your hand at using some vector identities instead, these might be helpful:

- It's more convenient to deal with $r^{2}=x^{2}+y^{2}+z^{2}$ instead of r, since $\nabla\left(r^{2}\right)=\langle 2 x, 2 y, 2 x\rangle=2 \mathbf{r}$ for example.
- If $f(t)$ is a single variable function and $g(x, y, z)$ is a three-variable function, we have the chain rule $\nabla(f(g(x, y, z)))=$ $f^{\prime}(g(x, y, z)) \nabla g(x, y, z)$. What happens if you apply this with $f(t)=t^{n / 2}$ and $g=r^{2}$?
- A product rule: $\nabla \times(f \mathbf{F})=(\nabla f) \times \mathbf{F}+f(\nabla \times \mathbf{F})$.
- Another product rule: $\nabla \cdot(f \mathbf{F})=\nabla f \cdot \mathbf{F}+f(\nabla \cdot \mathbf{F})$.

